
Algorithms and Problem
Solving

LECTURE 1

Outline

❏ Algorithm: The Role of Algorithms in Computing - What are algorithms

❏ Algorithms as technology,

❏ Evolution of Algorithms,

❏ Design of Algorithm,

❏ Need of Correctness of Algorithm,

❏ Confirming correctness of Algorithm – sample examples,

❏ Iterative algorithm design issues.

❏ Problem solving Principles: Classification of problem, problem solving strategies,

❏ classification of time complexities (linear, logarithmic etc.)

Algorithm: The Role of Algorithms in Computing - What
are algorithms

● The term Algorithm was coined by the Persian mathematician
al-Khowarizmi in the ninth century.

● The algorithm is a set of rules which are used to solve real
life problems.

● The algorithm provides a loose form of a solution in a pseudo
programming language.

● Given the algorithm, it is easy to program the solution.

What are algorithms

We can treat an algorithm as a set of finite instructions which solves a particular
problem when applied it is applied to that problem with legal inputs.

Algorithm:-

● The Algorithm is set of rules defined in specific order to do certain computation
and carry out some predefined task. It is a step procedure to solve the problem.

● f the algorithm is correct, then the program should produce correct output on
valid input, otherwise, it should generate an appropriate error message.

● For example, to find the division A/B, correctly written program would return
value of A/B for B >0, and it would show the error message like "Invalid divisor"
for B = 0.

Properties/Characteristics of algorithms:

● Input from a specified set,
● Output from a specified set (solution),
● Definiteness of every step in the computation,
● Correctness of output for every possible input,
● Finiteness of the number of calculation steps,
● Effectiveness of each calculation step

5

Algorithms

Algorithms
■ A tool for solving a well-specified

computational problem

■ Algorithms must be:
❑ Correct: For each input produce an appropriate output
❑ Efficient: run as quickly as possible, and use as little

memory as possible – more about this later

Algorithm

6

Input Output

7

Algorithms Cont.

■ A well-defined computational procedure that takes
some value, or set of values, as input and produces
some value, or set of values, as output.

■ Written in a pseudo code which can be
implemented in the language of
programmer’s choice.

8

Correct and incorrect algorithms
■ Algorithm is correct if, for every input instance, it ends

with the correct output. We say that a correct algorithm
solves the given computational problem.

■ An incorrect algorithm might not end at all on some
input instances, or it might end with an answer other than
the desired one.

■ We shall be concerned only with correct algorithms.

Evaluation of Algorithm

● Though some people credit Babylonians with the development of the first

algorithms, it was the unknown Indian mathematicians who developed and

used the concept of zero and decimal positional number system. This allowed

the development of basic algorithms for arithmetic operations, square roots,

cube roots, and the like.

● The famous sanskrit grammarian Panini gave data structures like Maheshwar

Sutra, which greatly facilitated compact rules and algorithms for phonetics,

phonology, morphology, and syntax of the sanskrit language. He gave a formal

language theory, almost parallel to the modern theory and gave concepts

which are parallel to modern mathematical functions.

Evaluation of Algorithm

● during 1940s and 50s, the emphasis was on building the hardware, developing
programming systems so that the computers can be used in commercial,
scientific, and engineering problems.

● Though Alan Turing had given the idea of effective procedure in 1936,
● Soon it was realized that systematic methods of coding are required. This led to

concepts like structured programming.
● The next logical step was seeking the proof of correctness of an algorithm, as

many applications were identified where proven correctness was essential.
● the efficiency of an algorithm became a major issue. This led to a search for

more efficient algorithms and an in-depth study of hard algorithms.
● Prof. Donald Knuth coined the term algorithm analysis in his monumental

series of books,

Evaluation of Algorithm

● Complexity theory classes was developed based on Tractable and Intractable
problems

● Another fact which emerged was that randomness can be an aid in solving
many

● difficult problems.
● A variety of algorithms came up which used randomness as a basic component,

for example, genetic algorithms, simulated annealing, and statistically defined
algorithms. This area is also of current interest.

Evaluation of Algorithm

Algorithm as a technology

Algorithm as a Technology
Parameter Faster Computer A Slower Computer B

Speed Executes 10^10 Instructions per second Executes 10^7 instructions per second

Faster/Slower A is 1000 time faster than B B is 1000 time slower than A

Sorting algorithms
run

Insertion sort Merge Sort

Time complexity of
Algorithm

c1 * n^2 c2 * n * logn

Value of Constant in
time complexity

c1 is 2 c2 is 50

To Sort 10 Million
Number (10^7)

A takes 2. (10^7) ^ *2 instruction/ 10^10
instructions/second

B takes 50* (10^7) log 10^7 instruction
/ 10^7 instructions/second

Time ~ 20,000 second (More than 5.5 Hours ~ 1163 Seconds (Less than 20 Minutes)

Iterative Algorithm Design
Issues

Iterative Algorithm Design Issues

● Characteristics of most of the common and real-life algorithms, that is, they have
at least one iterative component or a loop.

● the idea is that a part of the algorithm statements will be executed repeatedly
thousands or even millions of times.

● Even a small amount of excess time spent within the loop can lead to a major
loss in the efficiency of the algorithm.

● The situation can even be worse if there are loops within loops or nested
iterations.

● There are algorithms in which the depth of nesting itself is controlled by an outer
loop!

● The iterative components or loops are thus a major contributor to (in)efficiencies
of algorithms.

Problem Solving

● Problem solving is the application of ideas, skills, or
information to achieve the solution to a problem or
to reach a desired outcome. Let's talk about different
types of problems and different types of solutions.

What is Problem Solving?

● A	well-defined	problem is	one	that	has	a	clear	goal	or	
solution,	and	problem	solving	strategies	are	easily	
developed.	In	contrast,

● poorly-defined	problem is	the	opposite.	It's	one	that	is	
unclear,	abstract,	or	confusing,	and	that	does	not	have	a	
clear	problem	solving	strategy.

● routine	problem is	one	that	is	typical	and	has	a	simple	
solution.	In	contrast,

● non-routine	problem is	more	abstract	or	subjective	
and	requires	a	strategy	to	solve.

Types of Problems

● The	first	strategy	you	might	try	when	solving	a	
routine	problem	is	called	an	algorithm.	
Algorithms	are	step-by-step	strategies	or	
processes	for	how	to	solve	a	problem	or	achieve	a	
goal.	

● Another	solution	that	many	people	use	to	solve	
problems	is	called	heuristics. Heuristics	are	
general	strategies	used	to	make	quick,	short-cut	
solutions	to	problems	that	sometimes	lead	to	
solutions	but	sometimes	lead	to	errors.	Heuristics	
are	based	on	past	experiences.

Problem solving Strategies

1. Brute	force is	a	straightforward	approach	to	solve	a	problem	based	on	the	
problem’s	statement	and	definitions	of	the	concepts	involved.

2. Greedy	Algorithms		The	solution	is	constructed	through	a	sequence	of	steps,	
each	expanding	a	partially	constructed	solution	obtained	so	far.	At	each	step	
the	choice	must	be	locally	optimal	– this	is	the	central	point	of	this	technique.	

3. Divide-and-Conquer	Given	an	instance	of	the	problem	to	be	solved,	split	this	
into	several	smaller	sub-instances	(of	the	same	problem),	independently	
solve	each	of	the	sub-instances	and	then	combine	the	sub-instance	solutions	
so	as	to	yield	a	solution	for	the	original	instance.	

4. Dynamic	Programming	is	a	Bottom-Up	Technique	in	which	the	smallest	
sub-instances	are	explicitly solved	first	and	the	results	of	these	used	to	
construct	solutions	to	progressively	larger	sub-instances.

5. Backtracking	and	branch-and-bound:	generate	and	test	methods	The	
method	is	used	for	state-space	search	problems.	The	solving	process	solution	
is	based	on	the	construction	of	a	state-space	tree,	whose	nodes	represent	
states,	the	root	represents	the	initial	state,	and	one	or	more	leaves	are	goal	
states.	

Problem solving Strategies

● Identify a problem
● Understand the problem
● Identify alternative ways to solve a problem
● Select beat way to solve a problem from the list of

alternative solutions
● Evaluate the solution

Problem Solving Principal
Steps to solve Problem

Time Complexity
of Algorithms

● Why should we analyze algorithms?

○ Predict the resources that the algorithm requires

■ Computational time (CPU consumption)

■ Memory space (RAM consumption)

■ Communication bandwidth consumption

○ The running time of an algorithm is:

■ The total number of operations executed

■ Also known as algorithm complexity

24

Algorithm Analysis

● Time complexity of an algorithm signifies the total time required by the program
to run to completion.

● Time complexity of an algorithm is measured by its rate of growth relative to the
standard function.

● Cases of time complexity are:

● Worst-case

○ An upper bound on the running time for any input of given size

● Average-case

○ Assume all inputs of a given size are equally likely

● Best-case

○ The lower bound on the running time

25

Time Complexity

● Sequential search in a list of size n
○Worst-case:

■ n comparisons
○Best-case:

■ 1 comparison
○Average-case:

■ n/2 comparisons
● The algorithm runs in linear time

○Linear number of operations

26

Time Complexity – Example

27

Classification of Time Complexity
Notation Complexity Description Example

O(1) Constant Simple statement Addition

O(log(n)) Logarithmic Divide in half Binary search

O(n) Linear loop Linear search

O(n*log(n)) Linearithmic Divide & Conquer Merge sort

O(n2) Quadratic Double loop Check all pairs

O(n3) Cubic Triple loop Check all triples

O(2n) Exponential Exhaustive search Check all subsets

O(n!) Factorial Recursive function Factorial

Correctness of Algorithm

Correctness of Algorithm

Correctness of
Algorithm

Using Loop Invariant By Mathematical
Induction

What does an algorithm ?
• An algorithm is described by:

• Input data
• Output data
• Preconditions: specifies restrictions on input data
• Postconditions: specifies what is the result

• Example: Binary Search
• Input data: a:array of integer; x:integer;
• Output data: found:boolean;
• Precondition: a is sorted in ascending order
• Postcondition: found is true if x is in a, and found

is false otherwise

Correct algorithms
• An algorithm is correct if:

• for any correct input data:
• it stops and
• it produces correct output.

• Correct input data: satisfies precondition
• Correct output data: satisfies postcondition

Proving correctness

• An algorithm = a list of actions

• Proving that analgorithm is totally correct:
1. Proving that it will terminate
2. Proving that the list of actions applied to the

precondition imply the postcondition
• This is easy to prove for simple sequential algorithms
• This can be complicated to prove for repetitive algorithms

(containing loops or recursively)
• use techniques based on loop invariants and induction

Example – a sequential algorithm
Swap1(x,y):

aux := x

x := y
y := aux

Precondition:
x = a and y = b

Postcondition:
x = b and y = a

Example – a repetitive algorithm
Algorithm Sum_of_N_numbers

Input: a, an array of N numbers Output: s, the sum of the N numbers
in a

s:=0;
k:=0;

While (k<N) do

k:=k+1;
s:=s+a[k];

end

We use techniques based on loop
invariants and induction

Loop invariants

• A loop invariant is a logical predicate such that: if it is

satisfied before entering any single iteration of the

loop then it is also satisfied after the iteration

Example: Loop invariant for Sum of n numbers

Algorithm Sum_of_N_numbers

Input: a, an array of N numbers
Output: s, the sum of the N numbers in a

s:=0;
k:=0;
While (k<N) do

k:=k+1;
s:=s+a[k];
end

Loop invariant = induction
hypothesis:
At step k, S holds the sum of the first
k numbers

Using loop invariants in proofs

We must show the following 3 things about a loop
invariant:

1. Initialization: It is true prior to the first iteration of the loop.

2. Maintenance: If it is true before an iteration of the loop, it

remains true before the next iteration.

3. Termination: When the loop terminates, the invariant gives us

a useful property that helps show that the algorithm is correct.

Example: Proving the correctness of
theSum algorithm (1)

Induction hypothesis: S= sum of the first k numbers

1. Initialization: The hypothesis is true at the beginning of

the loop:

Before the first iteration: k=0, S=0. The first 0 numbers have sum

zero (there are no numbers) => hypothesis true before entering

the loop

Induction hypothesis: S= sum of the first k numbers

2. Maintenance: If hypothesis is true before step k, then it will be true
before step k+1 (immediately after step k is finished)

We assume that it is true at beginning of step k: “S is the sum of the first k numbers”

We must prove that after executing step k, at the beginning of step k+1:

“S is the sum of the first k+1 numbers”

We calculate the value of S at the end of this step

K:=k+1, s:=s+a[k+1] => s is the sum of the first k+1 numbers

Example: Proving the correctness of
theSum algorithm (2)

• Induction hypothesis: S= sum of the first k numbers

3. Termination: When the loop terminates,

the hypothesis implies the correctness of the

algorithm

The loop terminates when k=n=> s= sum of first k=n numbers

=> postcondition of algorithm, DONE

Example: Proving the correctness of
theSum algorithm (3)

Loop invariants and induction

• Proving loop invariants is similar to mathematical

induction:

• showing that the invariant holds before the first iteration

corresponds to the base case, and showing that the invariant holds

from iteration to iteration corresponds to the inductive step.

Mathematical induction - Review

• Let T be a theorem that we want to prove. T includes
a natural parameter n.

• Proving that T holds for all natural values of n is
done by proving following two conditions:

1. T holds for n=1
2. For every n>1 if T holds for n-1, then T holds

for n
1= Base case
2= Inductive Step

• Strong Induction: a variant of induction where the
inductive step builds up on all the smaller values

• Proving that T holds for all natural values of n is
done by proving following two conditions:

1. T holds for n=1
2. For every n>1 if T holds for all k<= n-1, then T

holds for n

Mathematical induction - Review

Mathematical induction review – Example1

• Theorem: The sum of the first n natural numbers is

n*(n+1)/2

• Proof: by induction on n

1. Base case: If n=1, s(1)=1=1*(1+1)/2

2. Inductive step: We assume that s(n)=n*(n+1)/2,

and prove that this implies s(n+1)=(n+1)*(n+2)/2 , for all n>=1

s(n+1)=s(n)+(n+1)=n*(n+1)/2+(n+1)=(n+1)*(n+2)/2

• Theorem: Every amount of postage that is at least 12 cents can

be made from 4-cent and 5-cent stamps.

• Proof: by induction on the amount of postage

• Postage (p) = m * 4 + n * 5

• Base case:

• Postage(12) = 3 * 4 + 0 * 5

• Postage(13) = 2 * 4 + 1 * 5

• Postage(14) = 1 * 4 + 2 * 5

• Postage(15) = 0 * 4 + 3 * 5

Mathematical induction review – Example2

• Inductive step: We assume that we can construct postage for every

value from 12 up to k. We need to show how to construct k + 1 cents

of postage. Since we have proved base cases up to 15 cents, we can

assume that k + 1 ≥ 16.

• Since k+1 ≥ 16, (k+1)−4 ≥ 12. So by the inductive hypothesis, we can

construct postage for (k + 1) − 4 cents: (k + 1) − 4 = m * 4+ n * 5

• But then k + 1 = (m + 1) * 4 + n * 5. So we can construct k + 1 cents of

postage using (m+1) 4-cent stamps and n 5-cent stamps

Mathematical induction review – Example2 Continue

Correctness of algorithms

• Induction can be used for proving the correctness of
repetitive algorithms:
• Iterative algorithms:

• Loop invariants
• Induction hypothesis = loop invariant = relationships between the

variables during loop execution

• Recursive algorithms
• Direct induction

• Hypothesis = a recursive call itself ; often a case for applying strong
induction

Example: Correctness proof for Decimal to
Binary Conversion-

Algorithm Decimal_to_Binary

Input: n, a positive integer

Output: b, an array of bits, the bin repr. of n, starting with the least significant bits

t:=n;
k:=0;
While (t>0) do

k:=k+1;
b[k]:=t mod 2;
t:=t div 2;

end

It is a repetitive (iterative) algorithm,
thus we use loop invariants and
proof by induction

Example: Correctness proof for Decimal to
Binary Conversion-

Algorithm Decimal_to_Binary

Input: n, a positive integer

Output: b, an array of bits, the bin repr. of n, starting with the least significant bits

t:=n;
k:=0;
While (t>0) do

k:=k+1;
b[k]:=t mod 2;
t:=t div 2;

end

At step k, b holds the k least significant
bits of n,and the value of t, when shifted
by k, corresponds to the rest of the bits

Example: Correctness proof for Decimal to
Binary Conversion-

Algorithm Decimal_to_Binary

Input: n, a positive integer

Output: b, an array of bits, the bin repr. of n, starting with the least significant bits

t:=n;
k:=0;
While (t>0) do

k:=k+1;
b[k]:=t mod 2;
t:=t div 2;

end

Loop invariant: If m is the integer
represented by array b[1..k], then
n=t*2k+m

Example: Proving the correctness of the
conversion algorithm

• Induction hypothesis=Loop Invariant: If m is the integer
represented by array b[1..k], then n=t*2^k+m

• To prove the correctness of the algorithm, we must
prove the 3 conditions:

1. Initialization: The hypothesis is true at the beginning of
the loop

2. Maintenance: If hypothesis is true for step k, then it will be true
for step k+1

3. Termination: When the loop terminates, the hypothesis
implies the correctness of the algorithm

• Induction hypothesis: If m is the integer represented by

array b[1..k], then n=t*2^k+m

1. The hypothesis is true at the beginning of the loop:

k=0, t=n, m=0(array is empty)

n=n*2^0+0

Example: Proving the correctness of the
conversion algorithm (1)

• Induction hypothesis: If m is the integer represented by
array b[1..k], then n=t*2^k+m

2. If hypothesis is true for step k, then it will be true for step
k+1

At the start of step k: assume that n=t*2^k+m, calculate the values at
the end of this step

If t=even then: t mod 2==0, m unchanged, t=t / 2, k=k+1=> (t /
2) * 2 ^ (k+1) + m = t*2^k+m=n

If t=odd then: t mod 2 ==1, b[k+1] is set to 1, m=m+2^k , t=(t- 1)/2, k=k+1
=> (t-1)/2*2^(k+1)+m+2^k=t*2^k+m=n

Example: Proving the correctness of the
conversion algorithm (2)

• Induction hypothesis: If m is the integer represented
by array b[1..k], then n=t*2^k+m

3. When the loop terminates, the hypothesis implies the
correctness of the algorithm

The loop terminates when t=0 =>
n=0*2^k+m=m

n==m, proved

Example: Proving the correctness of the
conversion algorithm (3)

Proof of Correctness for Recursive Algorithms
• To prove recursive algorithms, we have to:

1. Prove the partial correctness (the fact that the program

behaves correctly)

• we assume that all recursive calls with arguments that satisfy the

preconditions behave as described by the specification, and use it to

show that the algorithm behaves as specified

2. Prove that the program terminates

• any chain of recursive calls eventually ends and all loops, if any, terminate

after some finite number of iterations.

MERGE-SORT(A,p,r)

MERGE-SORT(A,p,q)
MERGE-SORT(A,q+1,r)
MERGE(A,p,q,r)

Precondition:

Postcondition:

Example - Merge Sort

rqp

Correctness proofs for Recursive Algorithm

n1, n2, … nr are some values smaller than n but bigger than small_value

• Base Case: Prove that RECURSIVE works for n = small_value

• Inductive Hypothesis:
• Assume that RECURSIVE works correctly for n=small_value, ..., k

• Inductive Step:
• Show that RECURSIVE works correctly for n = k + 1

• Proving that an algorithm is totally correct means:

1. Proving that it will terminate

2. Proving the list of actions applied to the

Precondition imply the postcondition

• How to prove repetitive algorithms:
• Iterative algorithms: use Loop invariants, Induction

• Recursive algorithms: use induction using as hypothesis

the recursive call

Correctness proofs for Recursive Algorithm

That’s all for this lecture!

