Algorithms and Problem
Solving

LECTURE 1

Outline

Algorithm: The Role of Algorithms in Computing - What are algorithms
Algorithms as technology,

Evolution of Algorithms,

Design of Algorithm,

Need of Correctness of Algorithm,

Confirming correctness of Algorithm - sample examples,

Iterative algorithm design issues.

Problem solving Principles: Classification of problem, problem solving strategies,

LU UJod o oo o U

classification of time complexities (linear, logarithmic etc.)

Algorithm: The Role of Algorithms in Computing - What
are algorithms

o |
a
o |

ne term Algorithm was coined by the Persian mathematician
-Khowarizmi in the ninth century.
ne algorithm is a set of rules which are used to solve real

life problems.

o |

he algorithm provides a loose form of a solution in a pseudo

programming language.
Iven the algorithm, it is easy to program the solution.

o

What are algorithms

We can treat an algorithm as a set of finite instructions which solves a particular
problem when applied it is applied to that problem with legal inputs.

Algorithm:-

e The Algorithm is set of rules defined in specific order to do certain computation
and carry out some predefined task. It is a step procedure to solve the problem.

e fthe algorithm is correct, then the program should produce correct output on
valid input, otherwise, it should generate an appropriate error message.

e Forexample, to find the division A/B, correctly written program would return
value of A/B for B >0, and it would show the error message like "Invalid divisor”
for B =0.

Algorithms

Properties/Characteristics of algorithms:

o Input from a specified set,

o Output from a specified set (solution),

o Definiteness of every step in the computation,
o Correctness of output for every possible input,
o Finiteness of the number of calculation steps,
o Effectiveness of each calculation step

Algorithms

A tool for solving a well-specified
computational problem

Input Algorithm Output

Algorithms must be:
a Correct: For each input produce an appropriate output

2 Efficient: run as quickly as possible, and use as little
memory as possible — more about this later

Algorithms Cont.

A well-defined computational procedure that takes
some value, or set of values, as input and produces
some value, or set of values, as output.

Written 1n a pseudo code which can be
implemented 1n the language of
programmer’s choice.

Correct and incorrect algorithms

Algorithm 1s correct 1f, for every input instance, 1t ends
with the correct output. We say that a correct algorithm
solves the given computational problem.

An incorrect algorithm might not end at all on some
input instances, or 1t might end with an answer other than
the desired one.

We shall be concerned only with correct algorithms.

Evaluation of Algorithm

Evaluation of Algorithm

e Though some people credit Babylonians with the development of the first
algorithms, it was the unknown Indian mathematicians who developed and
used the concept of zero and decimal positional number system. This allowed
the development of basic algorithms for arithmetic operations, square roots,
cube roots, and the like.

e The famous sanskrit grammarian Panini gave data structures like Maheshwar
Sutra, which greatly facilitated compact rules and algorithms for phonetics,
phonology, morphology, and syntax of the sanskrit language. He gave a formal
language theory, almost parallel to the modern theory and gave concepts

which are parallel to modern mathematical functions.

Evaluation of Algorithm

e during 1940s and 50s, the emphasis was on building the hardware, developing
programming systems so that the computers can be used in commercial,
scientific, and engineering problems.

e Though Alan Turing had given the idea of effective procedure in 1936,

e Soon it was realized that systematic methods of coding are required. This led to
concepts like structured programming.

e The next logical step was seeking the proof of correctness of an algorithm, as
many applications were identified where proven correctness was essential.

e the efficiency of an algorithm became a major issue. This led to a search for
more efficient algorithms and an in-depth study of hard algorithms.

e Prof. Donald Knuth coined the term algorithm analysis in his monumental
series of books,

Evaluation of Algorithm

e Complexity theory classes was developed based on Tractable and Intractable
problems

e Another fact which emerged was that randomness can be an aid in solving
many

e difficult problems.

e A variety of algorithms came up which used randomness as a basic component,
for example, genetic algorithms, simulated annealing, and statistically defined
algorithms. This area is also of current interest.

Algorithm as a technology

Algorithm as a Technology

Executes 10”10 Instructions per second

Executes 10”7 instructions per second

A is 1000 time faster than B

B is 1000 time slower than A

Insertion sort Merge Sort
c1*n*2 c2*n*logn
clis2 c2is 50

A takes 2. (10"7) * *2 instruction/ 10*10
instructions/second

B takes 50™ (10"7) log 10”7 instruction
/ 10*7 instructions/second

~ 20,000 second (More than 5.5 Hours

~ 1163 Seconds (Less than 20 Minutes)

lterative Algorithm Design
Issues

Iterative Algorithm Design Issues

e (haracteristics of most of the common and real-life algorithms, that is, they have
at least one iterative component or a loop.

e the idea is that a part of the algorithm statements will be executed repeatedly
thousands or even millions of times.

e [Evenasmall amount of excess time spent within the loop can lead to a major
loss in the efficiency of the algorithm.

e The situation can even be worse if there are loops within loops or nested
iterations.

e There are algorithms in which the depth of nesting itself is controlled by an outer
loop!

e The iterative components or loops are thus a major contributor to (in)efficiencies
of algorithms.

Problem Solving

What is Problem Solving?

e Problem solving is the application of ideas, skills, or
Information to achieve the solution to a problem or
to reach a desired outcome. Let's talk about different
types of problems and different types of solutions.

Types of Problems

e A well-defined problem is one that has a clear goal or
solution, and problem solving strategies are easily
developed. In contrast,

e poorly-defined problem is the opposite. It's one that is
unclear, abstract, or confusing, and that does not have a
clear problem solving strategy.

e routine problem is one that is typical and has a simple
solution. In contrast,

e non-routine problem is more abstract or subjective
and requires a strategy to solve.

Problem solving Strategies

e The first strategy you might try when solving a
routine problem is called an algorithm.
Algorithms are step-by-step strategies or
processes for how to solve a problem or achieve a
goal.

e Another solution that many people use to solve
problems is called heuristics. Heuristics are
general strategies used to make quick, short-cut
solutions to problems that sometimes lead to
solutions but sometimes lead to errors. Heuristics
are based on past experiences.

Problem solving Strategies

1. Brute force is a straightforward approach to solve a problem based on the
problem’s statement and definitions of the concepts involved.

2. Greedy Algorithms The solution is constructed through a sequence of steps,
each expanding a partially constructed solution obtained so far. At each step
the choice must be locally optimal - this is the central point of this technique.

3. Divide-and-Conquer Given an instance of the problem to be solved, split this
into several smaller sub-instances (of the same problem), independently
solve each of the sub-instances and then combine the sub-instance solutions
so as to yield a solution for the original instance.

4. Dynamic Programming is a Bottom-Up Technique in which the smallest
sub-instances are explicitly solved first and the results of these used to
construct solutions to progressively larger sub-instances.

5. Backtracking and branch-and-bound: generate and test methods The
method is used for state-space search problems. The solving process solution
is based on the construction of a state-space tree, whose nodes represent
states, the root represents the initial state, and one or more leaves are goal
states.

Problem Solving Principal
Steps to solve Problem

e |dentify a problem

e Understand the problem
e |dentify alternative ways to solve a problem

e Select beat way to solve a problem from the list of
alternative solutions

e Evaluate the solution

Time Complexity
of Algorithms

Algorithm Analysis

e Why should we analyze algorithms?
o Predict the resources that the algorithm requires
m Computational time (CPU consumption)
m Memory space (RAM consumption)
m Communication bandwidth consumption
o The running time of an algorithm is:
m [he total number of operations executed

m Also known as algorithm complexity

24

Time Complexity

Time complexity of an algorithm signifies the total time required by the program
to run to completion.

Time complexity of an algorithm is measured by its rate of growth relative to the
standard function.

Cases of time complexity are:

Worst-case

o An upper bound on the running time for any input of given size
Average-case

o Assume all inputs of a given size are equally likely

Best-case

o The lower bound on the running time

25

Time Complexity - Example

e Sequential search in a list of size n
O Worst-case:
B n Comparisons
O Best-case:
B 1 comparison
O Average-case:
M n/2 comparisons

e The algorithm runs in linear time
O Linear number of operations

26

Classification of Time Complexity

Notation Complexity Description Example
0(1) Constant Simple statement Addition
O(log(n)) Logarithmic Divide in half Binary search

O(n) Linear loop Linear search
O(n*log(n)) Linearithmic Divide & Conquer Merge sort
0(n?) Quadratic Double loop Check all pairs
0(n?) Cubic Triple loop Check all triples
0(2") Exponential Exhaustive search Check all subsets
O(n!) Factorial Recursive function Factorial

Correctness of Algorithm

Correctness of Algorithm

What does an algorithm ?

* An algorithm is described by:
e Input data
e Qutput data
* Preconditions. specifies restrictions on input data
* Postconditions. specifies what is the result

e Example: Binary Search
* Input data: a:array of integer; x:integer;
* Qutput data: found:boolean;
* Precondition: a is sorted in ascending order

* Postcondition: found is true if xisin a,and found
IS false otherwise

Correct algorithms

* An algorithm is correct if:
* for any correct input data:
* |t stops and
* It produces correct output.

e Correct input data: satisfies precondition
o Correct output data: satisfies postcondition

Proving correctness

e Analgorithm = a list of actions

* Proving thatanalgorithm is totally correct:
1. Proving that it will terminate
2. Proving that the list of actions applied to the
precondition imply the postcondition
 This is easy to prove for simple sequential algorithms

 This can be complicated to prove for repetitive algorithms
(containing loops or recursively)
* use techniques based on loop invariants and induction

Example - a sequential algorithm

Swap1(x,y):
aux := X

X =y
= aux

Precondition:
Xx=aandy=>b

Postcondition:
Xx=bandy=a

Example - a repetitive algorithm
Algorithm Sum_of N_numbers

Input: a, an array of N numbers Output: s, the sum of the N numbers
ina

5:=0;

k:=0; We use techniques based on loop
While (k<N) do invariants and induction
ki=k+1;

s:=s+a[k];

end

Loop invariants

* A loop invariant is a logical predicate such that:if it s
satisfied before entering any single iteration of the

loop then it is also satisfied after the iteration

Example: Loop invariant for Sum of n numbers

Algorithm Sum_of N _numbers

Input: a, an array of N numbers
Output: s, the sum of the N numbers in a

5:=0; Loop invariant = induction

k:=0; hypothesis:

While (k<N) do At step k, S holds the sum of the first
ki=k+1: k numbers
s:=s+alk];
end

Using loop invariants in proofs

We must show the following 3 things about a loop
invariant:

1. Initialization: It is true prior to the first iteration of the loop.

2. Maintenance: If it is true before an iteration of the loop, it

remains true before the next iteration.

5. Termination: When the loop terminates, the invariant gives us

a useful property that helps show that the algorithm is correct.

Example: Proving the correctness of
theSum algorithm (1)

Induction hypothesis: S= sum of the first k numbers

1. Initialization: The hypothesis is true at the beginning of

the loop:

Before the first iteration: k=0, S=0. The first 0 numbers have sum
zero (there are no numbers) => hypothesis true before entering

the loop

Example: Proving the correctness of
theSum algorithm (2)

Induction hypothesis: S= sum of the first k numbers

2. Maintenance: If hypothesis is true before step k, then it will be true
before step k+1 (immediately after step k is finished)

We assume that it is true at beginning of step k: S is the sum of the first k numbers”
We must prove that after executing step k, at the beginning of step k+1:

“S is the sum of the first k+1 numbers”
We calculate the value of S at the end of this step

K:=k+1, s:=s+a[k+1] => s is the sum of the first k+1 numbers

Example: Proving the correctness of
theSum algorithm (3)

 Induction hypothesis: S= sum of the first k numbers

5. Termination: When the loop terminates,

the hypothesis implies the correctness of the

algorithm

The loop terminates when k=n=> s= sum of first k=n numbers

=> postcondition of algorithm, ~ DONE

Loop invariants and induction

* Proving loop invariants is similar to mathematical

induction:
e showing that the invariant holds before the first iteration

corresponds to the base case, and showing that the invariant holds

from iteration to iteration corresponds to the inductive step.

Mathematical induction - Review

e LetT beatheorem that we want to prove. T includes
a natural parameter n.

e Proving that T holds for all natural values of nis
done by proving following two conditions:
1. Tholds for n=1

2. Foreveryn>1 If T holds for n-1, then T holds

for n

1= Base case
2= Inductive Step

Mathematical induction - Review

* Strong Induction: a variant of induction where the
Inductive step builds up on all the smaller values

e Proving that T holds for all natural values of n s
done by proving following two conditions:
1. T holds forn=1
2. Foreveryn>1 if T holds forall k<=n-1 then T
nolds for n

Mathematical induction review - Examplel

o Theorem: The sum of the first n natural numbers is
n*(n+1)/2
» Proof: by induction on n
1. Base case: If n=1, s(1)=1=1*(1+1)/2
2. Inductive step: We assume that s(n)=n*(n+1)/2,

and prove that this implies s(n+1)=(n+1)*(n+2)/2, for all n>=1
s(n+1)=s(n)+(n+1)=n*(n+1)/2+(n+1)=(n+1)*(n+2)/2

Mathematical induction review - Example2

* Theorem: Every amount of postage that is at least 12 cents can

be made from 4-cent and 5-cent stamps.

e Proof: by induction on the amount of postage
 Postage (p)=m ™4 +n*5
* Base case:

e Postage(12) =

* Postage

14) =
15

* Postage

(
(
(
(

Mathematical induction review - Example2 Continue

* Inductive step: We assume that we can construct postage for every
value from 12 up to k. We need to show how to construct k + 1 cents
of postage. Since we have proved base cases up to 15 cents, we can

assume that k + 1 2 16.

e Since k+1 2 16, (k+1)-4 2 12. So by the inductive hypothesis, we can
construct postage for (k + 1) - 4 cents: (k+1)-4=m 4+n* 5

eButthenk+1=(m+1)*4+n"*5 Sowecan construct k+ 1 cents of

postage using (m+1) 4-cent stamps and n 5-cent stamps

Correctness of algorithms

e [nduction can be used for proving the correctness of

repetitive algorithms:

e |terative algorithms:
* Loop invariants

e Induction hypothesis = loop invariant = relationships between the
variables during loop execution

e Recursive algorithms

 Direct induction

 Hypothesis = a recursive call itself ; often a case for applying strong
induction

Example: Correctness proof for Decimal to
Binary Conversion-

Algorithm Decimal_to Binary
Input: n, a positive integer

Output: b, an array of bits, the bin repr. of n, starting with the least significant bits

t:=n;

I\j\:/;(i)l;e (©0) do It is a repetitive (iterative) algorithm,
=kt thus we use loop invariants and
btk]:=t’mod). proof by induction
t:=t div 2;

end

Example: Correctness proof for Decimal to
Binary Conversion-

Algorithm Decimal_to Binary
Input: n, a positive integer

Output: b, an array of bits, the bin repr. of n, starting with the least significant bits

:8 At step k, b holds the k least significant
L bits of n,and the value of t, when shifted
While (t>0) do :
=k 1 by k, corresponds to the rest of the bits
b[k]=t mOd 2, 1 2 3 k
t=t div 2; .
end 2% 2" 2° 2

Example: Correctness proof for Decimal to
Binary Conversion-

Algorithm Decimal_to Binary
Input: n, a positive integer

Output: b, an array of bits, the bin repr. of n, starting with the least significant bits

:8 Loop invariant: If mis the integer
While (£50) do repiesented by array b[1.k], then
k:=k+1; n=t*2k+m
b[k]:=t mod 2;
t=t div 2; .
end i

Example: Proving the correctness of the
conversion algorithm

Induction hypothesis=Loop Invariant: If m is the integer
represented by array b[1.k], then n=t"2"k+m

To prove the correctness of the algorithm, we must
prove the 3 conditions:

1. Initialization: The hypothesis is true at the beginning of
the loop

2. Maintenance: If hypothesis is true for step k, then it will be true
for step k+1

3. Termination: When the loop terminates, the hypothesis
implies the correctness of the algorithm

Example: Proving the correctness of the
conversion algorithm (1)

* Induction hypothesis: If m is the integer represented by

array b[1.k], then n=t"2"k+m

1. The hypothesis is true at the beginning of the loop:
k=0, t=n, m=0(array is empty)
n=n*2"0+0

Example: Proving the correctness of the
conversion algorithm (2)

e Induction hypothesis: If m is the integer represented by
array b[1.k], then n=t"2"k+m

2. If hypothesis is true for step k, then it will be true for step
k+1

At the start of step k: assume that n=t*2"k+m, calculate the values at
the end of this step

If t=even then: t mod 2==0, m unchanged, t=t / 2, k=k+1=> (t /
2)* 2" (k+1) + m=t*2"k+m=n

If t=0dd then: t mod 2 ==1, b[k+1] is set to 1, m=m+2"k , t=(t- 1)/2, k=k+1
=> (t-1)/272" (k+1)+m+2"k=t*2"k+m=n

Example: Proving the correctness of the
conversion algorithm (3)

e Induction hypothesis: If m is the integer represented
by array b[1.k], then n=t*2"k+m

5. When the loop terminates, the hypothesis implies the
correctness of the algorithm

The loop terminates when t=0 =>
n=0"2"k+m=m
n==m, proved

Proof of Correctness for Recursive Algorithms

« To prove recursive algorithms, we have to:

1. Prove the partial correctness (the fact that the program

behaves correctly)

o weassume that all recursive calls with arguments that satisfy the
preconditions behave as described by the specification, and use it to

show that the algorithm behaves as specified

2. Prove that the program terminates

e any chain of recursive calls eventually ends and all loops, if any, terminate

after some finite number of iterations.

Example - Merge Sort

MERGE-SORT (A,p, r)

MERGE-SORT (A,p, q)
MERGE-SORT (A, g+1, r)
MERGE (A,p,q,)

Precondition:

Postcondition:

Correctness proofs for Recursive Algorithm

Ny, Ny ... N.are some values smaller than n but bigger than small value

- Base Case: Prove that RECURSIVE works for n = small value

* Inductive Hypothesis:

* Assume that RECURSIVE works correctly for n=small value, .., k

* Inductive Step:
* Show that RECURSIVE works correctly forn=k + 1

Correctness proofs for Recursive Algorithm

e Proving that an algorithm is totally correct means:

1. Proving that it will ferminate

2. Proving the list of actions applied to the

Preconditionimply the postcondition

* How to prove repetitive algorithms:

o [terative alqorithms: use Loop invariants, Induction

* Recursive algorithms: use induction using as hypothesis

the recursive call

That’s all for this lecture!

