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Algorithm: The Role of Algorithms in Computing - What 
are algorithms

● The term Algorithm was coined by the Persian mathematician 
al-Khowarizmi in the ninth century. 

● The algorithm is a set of rules which are used to solve real 
life problems.

● The algorithm provides a loose form of a solution in a pseudo 
programming language.

● Given the algorithm, it is easy to program the solution.



What are algorithms

We can treat an algorithm as a set of finite instructions which solves a particular 
problem when applied it is applied to that problem with legal inputs.

Algorithm:-

● The Algorithm is set of rules defined in specific order to do certain computation 
and carry out some predefined task. It is a step procedure to solve the problem.

● f the algorithm is correct, then the program should produce correct output on 
valid input, otherwise, it should generate an appropriate error message.

● For example, to find the division A/B, correctly written program would return 
value of A/B for B >0, and it would show the error message like "Invalid divisor" 
for B = 0.



Properties/Characteristics of algorithms:

● Input from a specified set,
● Output from a specified set (solution),
● Definiteness of every step in the computation,
● Correctness of output for every possible input,
● Finiteness of the number of calculation steps,
● Effectiveness of each calculation step 
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Algorithms 



Algorithms
■ A tool for solving a well-specified  

computational problem

■ Algorithms must be:
❑ Correct: For each input produce an appropriate output
❑ Efficient: run as quickly as possible, and use as little  

memory as possible – more about this later

Algorithm
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Input Output
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Algorithms Cont.

■ A well-defined computational procedure that takes
some value, or set of values, as input and produces
some value, or set of values, as output.

■ Written in a pseudo code which can be
implemented in the language of 
programmer’s  choice.
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Correct and incorrect algorithms
■ Algorithm is correct if, for every input instance, it ends

with the correct output. We say that a correct algorithm
solves the given computational problem.

■ An incorrect algorithm might not end at all on some  
input instances, or it might end with an answer other than  
the desired one.

■ We shall be concerned only with correct algorithms.



Evaluation of Algorithm



● Though some people credit Babylonians with the development of the first 

algorithms, it was the unknown Indian mathematicians who developed and 

used the concept of zero and decimal positional number system. This allowed 

the development of basic algorithms for arithmetic operations, square roots, 

cube roots, and the like.

● The famous sanskrit grammarian Panini gave data structures like Maheshwar 

Sutra, which greatly facilitated compact rules and algorithms for phonetics, 

phonology, morphology, and syntax of the sanskrit language. He gave a formal 

language theory, almost parallel to the modern theory and gave concepts 

which are parallel to modern mathematical functions.

Evaluation of Algorithm



● during 1940s and 50s, the emphasis was on building the hardware, developing 
programming systems so that the computers can be used in commercial, 
scientific, and engineering problems.

● Though Alan Turing had given the idea of effective procedure in 1936,
● Soon it was realized that systematic methods of coding are required. This led to 

concepts like structured programming.
● The next logical step was seeking the proof of correctness of an algorithm, as 

many applications were identified where proven correctness was essential.
● the efficiency of an algorithm became a major issue. This led to a search for 

more efficient algorithms and an in-depth study of hard algorithms.
● Prof. Donald Knuth coined the term algorithm analysis in his monumental 

series of books,

Evaluation of Algorithm



● Complexity theory classes was developed based on Tractable and Intractable 
problems

● Another fact which emerged was that randomness can be an aid in solving 
many

● difficult problems.
● A variety of algorithms came up which used randomness as a basic component, 

for example, genetic algorithms, simulated annealing, and statistically defined 
algorithms. This area is also of current interest.

Evaluation of Algorithm



Algorithm as a technology



Algorithm as a Technology
Parameter Faster Computer A Slower Computer B

Speed Executes 10^10 Instructions per second Executes 10^7 instructions per second

Faster/Slower A is 1000 time faster than B B is 1000 time slower than A

Sorting algorithms 
run

Insertion sort Merge Sort

Time complexity of 
Algorithm

c1 * n^2 c2 * n * logn

Value of Constant in 
time complexity

c1 is 2 c2 is 50

To Sort 10 Million 
Number (10^7)

A takes 2. (10^7) ^ *2 instruction/ 10^10 
instructions/second

B takes 50* (10^7) log 10^7 instruction 
/ 10^7 instructions/second

Time ~ 20,000 second ( More than 5.5 Hours ~ 1163 Seconds (Less than 20 Minutes)



Iterative Algorithm Design 
Issues



Iterative Algorithm Design Issues

● Characteristics of most of the common and real-life algorithms, that is, they have 
at least one iterative component or a loop. 

● the idea is that a part of the algorithm statements will be executed repeatedly 
thousands or even millions of times. 

● Even a small amount of excess time spent within the loop can lead to a major 
loss in the efficiency of the algorithm. 

● The situation can even be worse if there are loops within loops or nested 
iterations. 

● There are algorithms in which the depth of nesting itself is controlled by an outer 
loop! 

● The iterative components or loops are thus a major contributor to (in)efficiencies 
of algorithms.



Problem Solving



● Problem solving is the application of ideas, skills, or
information to achieve the solution to a problem or
to reach a desired outcome. Let's talk about different
types of problems and different types of solutions.

What is Problem Solving?



● A	well-defined	problem is	one	that	has	a	clear	goal	or	
solution,	and	problem	solving	strategies	are	easily	
developed.	In	contrast,

● poorly-defined	problem is	the	opposite.	It's	one	that	is	
unclear,	abstract,	or	confusing,	and	that	does	not	have	a	
clear	problem	solving	strategy.

● routine	problem is	one	that	is	typical	and	has	a	simple	
solution.	In	contrast,

● non-routine	problem is	more	abstract	or	subjective	
and	requires	a	strategy	to	solve.

Types of Problems



● The	first	strategy	you	might	try	when	solving	a	
routine	problem	is	called	an	algorithm.	
Algorithms	are	step-by-step	strategies	or	
processes	for	how	to	solve	a	problem	or	achieve	a	
goal.	

● Another	solution	that	many	people	use	to	solve	
problems	is	called	heuristics. Heuristics	are	
general	strategies	used	to	make	quick,	short-cut	
solutions	to	problems	that	sometimes	lead	to	
solutions	but	sometimes	lead	to	errors.	Heuristics	
are	based	on	past	experiences.

Problem solving Strategies



1. Brute	force is	a	straightforward	approach	to	solve	a	problem	based	on	the	
problem’s	statement	and	definitions	of	the	concepts	involved.

2. Greedy	Algorithms		The	solution	is	constructed	through	a	sequence	of	steps,	
each	expanding	a	partially	constructed	solution	obtained	so	far.	At	each	step	
the	choice	must	be	locally	optimal	– this	is	the	central	point	of	this	technique.	

3. Divide-and-Conquer	Given	an	instance	of	the	problem	to	be	solved,	split	this	
into	several	smaller	sub-instances	(of	the	same	problem),	independently	
solve	each	of	the	sub-instances	and	then	combine	the	sub-instance	solutions	
so	as	to	yield	a	solution	for	the	original	instance.	

4. Dynamic	Programming	is	a	Bottom-Up	Technique	in	which	the	smallest	
sub-instances	are	explicitly solved	first	and	the	results	of	these	used	to	
construct	solutions	to	progressively	larger	sub-instances.

5. Backtracking	and	branch-and-bound:	generate	and	test	methods	The	
method	is	used	for	state-space	search	problems.	The	solving	process	solution	
is	based	on	the	construction	of	a	state-space	tree,	whose	nodes	represent	
states,	the	root	represents	the	initial	state,	and	one	or	more	leaves	are	goal	
states.	

Problem solving Strategies



● Identify a problem
● Understand the problem
● Identify alternative ways to solve a problem
● Select beat way to solve a problem from the list of 

alternative solutions
● Evaluate the solution

Problem Solving Principal
Steps to solve Problem



Time Complexity 
of Algorithms



● Why should we analyze algorithms?

○ Predict the resources that the algorithm requires

■ Computational time (CPU consumption)

■ Memory space (RAM consumption)

■ Communication bandwidth consumption

○ The running time of an algorithm is:

■ The total number of operations executed

■ Also known as algorithm complexity
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Algorithm Analysis



● Time complexity of an algorithm signifies the total time required by the program 
to run to completion.

● Time complexity of an algorithm is measured by its rate of growth relative to the 
standard function.

● Cases of time complexity are:

● Worst-case

○ An upper bound on the running time for any input of given size

● Average-case

○ Assume all inputs of a given size are equally likely

● Best-case

○ The lower bound on the running time
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Time Complexity



● Sequential search in a list of size n
○Worst-case:

■ n comparisons
○Best-case:

■ 1 comparison
○Average-case:

■ n/2 comparisons
● The algorithm runs in linear time

○Linear number of operations
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Time Complexity – Example
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Classification of Time Complexity
Notation Complexity Description Example

O(1) Constant Simple statement Addition

O(log(n)) Logarithmic Divide in half Binary search

O(n) Linear loop Linear search

O(n*log(n)) Linearithmic Divide & Conquer Merge sort

O(n2) Quadratic Double loop Check all pairs

O(n3) Cubic Triple loop Check all triples

O(2n) Exponential Exhaustive search Check all subsets

O(n!) Factorial Recursive function Factorial



Correctness of Algorithm



Correctness of Algorithm

Correctness of 
Algorithm

Using Loop Invariant By Mathematical 
Induction



What does an algorithm ?
• An algorithm is described by:

• Input data
• Output data
• Preconditions: specifies restrictions on input data
• Postconditions: specifies what is the result

• Example: Binary Search
• Input data: a:array of integer;  x:integer;
• Output data: found:boolean;
• Precondition: a is sorted in ascending order
• Postcondition: found is true if x is in a, and found

is false otherwise



Correct algorithms
• An algorithm is correct if:

• for any correct input data:
• it stops and
• it produces correct output.

• Correct input data: satisfies precondition
• Correct output data: satisfies postcondition



Proving correctness

• An algorithm = a list of actions

• Proving that analgorithm is totally  correct:
1. Proving that it will terminate
2. Proving that the list of actions applied to the  

precondition imply the postcondition
• This is easy to prove for simple sequential  algorithms
• This can be complicated to prove for repetitive algorithms 

(containing loops or recursively)
• use techniques based on loop invariants and induction



Example – a sequential  algorithm
Swap1(x,y):

aux := x

x := y
y := aux

Precondition:
x = a and y = b

Postcondition:
x = b and y = a



Example – a repetitive  algorithm
Algorithm Sum_of_N_numbers

Input: a, an array of N numbers  Output: s, the sum of the N numbers 
in a

s:=0;
k:=0;

While (k<N) do  

k:=k+1;
s:=s+a[k];

end

We use techniques  based on loop 
invariants and induction



Loop invariants

• A loop invariant is a logical predicate such  that: if it is 

satisfied before entering any  single iteration of the 

loop then it is also  satisfied after the iteration



Example: Loop invariant for Sum of n numbers

Algorithm Sum_of_N_numbers

Input: a, an array of N numbers
Output: s, the sum of the N numbers in a

s:=0;
k:=0;
While (k<N) do

k:=k+1;
s:=s+a[k];  
end

Loop invariant = induction  
hypothesis:
At step k, S holds the  sum of the first 
k numbers



Using loop invariants in proofs

We must show the following 3 things about a loop 
invariant:

1. Initialization: It is true prior to the first  iteration of the loop.

2. Maintenance: If it is true before an  iteration of the loop, it 

remains true before  the next iteration.

3. Termination: When the loop terminates,  the invariant gives us 

a useful property that  helps show that the algorithm is correct.



Example: Proving the  correctness of
theSum  algorithm (1)

Induction hypothesis: S= sum of the first k  numbers

1. Initialization: The hypothesis is true at the  beginning of 

the loop:

Before the first iteration: k=0, S=0. The first 0 numbers  have sum 

zero (there are no numbers) =>  hypothesis true before entering 

the loop



Induction hypothesis: S= sum of the first k numbers

2. Maintenance: If hypothesis is true before step k, then it will be true 
before step k+1 (immediately after step k is finished)

We assume that it is true at beginning of step k: “S is the sum of the first k  numbers”

We must prove that after executing step k, at the beginning of step k+1:

“S is the sum of the first k+1 numbers”

We calculate the value of S at the end of this step

K:=k+1, s:=s+a[k+1] => s is the sum of the first k+1 numbers

Example: Proving the  correctness of
theSum  algorithm (2)



• Induction hypothesis: S= sum of the first k  numbers

3. Termination: When the loop terminates,

the hypothesis implies the correctness of  the 

algorithm

The loop terminates when k=n=> s= sum of  first k=n numbers 

=> postcondition of  algorithm, DONE

Example: Proving the  correctness of
theSum algorithm (3)



Loop invariants and induction

• Proving loop invariants is similar to mathematical  

induction:

• showing that the invariant holds before the first iteration 

corresponds to the base case, and showing that the invariant holds 

from iteration to iteration corresponds to  the inductive step.



Mathematical induction - Review

• Let T be a theorem that we want to prove.  T includes 
a natural parameter n.

• Proving that T holds for all natural values  of n is 
done by proving following two  conditions:

1. T holds for n=1
2. For every n>1 if T holds for n-1, then T holds 

for n
1= Base case
2= Inductive Step



• Strong Induction: a variant of induction  where the 
inductive step builds up on all the smaller values

• Proving that T holds for all natural values  of n is 
done by proving following two  conditions:

1. T holds for n=1
2. For every n>1 if T holds for all k<= n-1, then T 

holds for n

Mathematical induction - Review



Mathematical induction review – Example1

• Theorem: The sum of the first n natural  numbers is 

n*(n+1)/2

• Proof: by induction on n

1. Base case: If n=1, s(1)=1=1*(1+1)/2

2. Inductive step: We assume that s(n)=n*(n+1)/2, 

and prove that this implies s(n+1)=(n+1)*(n+2)/2 ,  for all n>=1

s(n+1)=s(n)+(n+1)=n*(n+1)/2+(n+1)=(n+1)*(n+2)/2



• Theorem: Every amount of postage that is at  least 12 cents can 

be made from 4-cent and  5-cent stamps.

• Proof: by induction on the amount of postage

• Postage (p) = m * 4 + n * 5

• Base case:

• Postage(12) = 3 * 4 + 0 * 5

• Postage(13) = 2 * 4 + 1 * 5

• Postage(14) = 1 * 4 + 2 * 5

• Postage(15) = 0 * 4 + 3 * 5

Mathematical induction review – Example2



• Inductive step: We assume that we can construct  postage for every 

value from 12 up to k. We need to  show how to construct k + 1 cents 

of postage. Since  we have proved base cases up to 15 cents, we can  

assume that k + 1 ≥ 16.

• Since k+1 ≥ 16, (k+1)−4 ≥ 12. So by the inductive hypothesis, we can

construct postage for (k + 1) − 4 cents: (k + 1) − 4 = m * 4+ n * 5

• But then k + 1 = (m + 1) * 4 + n * 5. So we can  construct k + 1 cents of 

postage using (m+1) 4-cent  stamps and n 5-cent stamps

Mathematical induction review – Example2 Continue



Correctness of algorithms

• Induction can be used for proving the correctness of  
repetitive algorithms:
• Iterative algorithms:

• Loop invariants
• Induction hypothesis = loop invariant = relationships between the 

variables during loop  execution

• Recursive algorithms
• Direct induction

• Hypothesis = a recursive call itself ; often a case for applying strong 
induction



Example: Correctness proof  for Decimal to 
Binary  Conversion-

Algorithm Decimal_to_Binary

Input: n, a positive integer

Output: b, an array of bits, the bin repr. of n,  starting with the least significant bits

t:=n;
k:=0;
While (t>0) do  

k:=k+1;
b[k]:=t mod 2;
t:=t div 2;

end

It is a repetitive (iterative)  algorithm, 
thus we use loop  invariants and 
proof by induction



Example: Correctness proof  for Decimal to 
Binary  Conversion-

Algorithm Decimal_to_Binary

Input: n, a positive integer

Output: b, an array of bits, the bin repr. of n,  starting with the least significant bits

t:=n;
k:=0;
While (t>0) do  

k:=k+1;
b[k]:=t mod 2;
t:=t div 2;

end

At step k, b holds the k least significant 
bits of n,and the value  of t, when shifted 
by k,  corresponds to the rest of the bits



Example: Correctness proof  for Decimal to 
Binary  Conversion-

Algorithm Decimal_to_Binary

Input: n, a positive integer

Output: b, an array of bits, the bin repr. of n,  starting with the least significant bits

t:=n;
k:=0;
While (t>0) do  

k:=k+1;
b[k]:=t mod 2;
t:=t div 2;

end

Loop invariant: If m is the  integer 
represented by array  b[1..k], then 
n=t*2k+m



Example: Proving the  correctness of the  
conversion algorithm

• Induction hypothesis=Loop  Invariant: If m is the integer 
represented  by array b[1..k], then n=t*2^k+m

• To prove the correctness of the  algorithm, we must 
prove the 3 conditions:

1. Initialization: The hypothesis is true at the  beginning of 
the loop

2. Maintenance: If hypothesis is true for step k, then  it will be true 
for step k+1

3. Termination: When the loop terminates, the  hypothesis 
implies the correctness of the  algorithm



• Induction hypothesis: If m is the integer  represented by 

array b[1..k], then  n=t*2^k+m

1. The hypothesis is true at the beginning of  the loop:

k=0, t=n, m=0(array is empty)

n=n*2^0+0

Example: Proving the  correctness of the  
conversion algorithm (1)



• Induction hypothesis: If m is the integer  represented by 
array b[1..k], then n=t*2^k+m

2. If hypothesis is true for step k, then it will be true  for step 
k+1

At the start of step k: assume that n=t*2^k+m, calculate the  values at 
the end of this step

If t=even then: t mod 2==0, m unchanged, t=t / 2, k=k+1=> (t /  
2) * 2 ^ (k+1) + m = t*2^k+m=n

If t=odd then: t mod 2 ==1, b[k+1] is set to 1, m=m+2^k , t=(t- 1)/2, k=k+1 
=> (t-1)/2*2^(k+1)+m+2^k=t*2^k+m=n

Example: Proving the  correctness of the  
conversion algorithm (2)



• Induction hypothesis: If m is the integer  represented 
by array b[1..k], then  n=t*2^k+m

3. When the loop terminates, the hypothesis  implies the 
correctness of the algorithm

The loop terminates when t=0 =>  
n=0*2^k+m=m

n==m, proved

Example: Proving the  correctness of the  
conversion algorithm (3)



Proof of Correctness for  Recursive Algorithms
• To prove recursive algorithms, we have to:

1. Prove the partial correctness (the fact that the  program 

behaves correctly)

• we assume that all recursive calls with arguments that  satisfy the 

preconditions behave as described by the  specification, and use it to 

show that the algorithm  behaves as specified

2. Prove that the program terminates

• any chain of recursive calls eventually ends and all loops, if any, terminate 

after some finite number of iterations.



MERGE-SORT(A,p,r)

MERGE-SORT(A,p,q)  
MERGE-SORT(A,q+1,r)  
MERGE(A,p,q,r)

Precondition:

Postcondition:

Example - Merge Sort

rqp



Correctness proofs for Recursive Algorithm 

n1, n2, … nr are some  values smaller than n but  bigger than small_value

• Base Case: Prove that RECURSIVE works for n = small_value

• Inductive Hypothesis:
• Assume that RECURSIVE works correctly for n=small_value, ..., k

• Inductive Step:
• Show that RECURSIVE works correctly for n = k + 1



• Proving that an algorithm is totally correct  means:

1. Proving that it will terminate

2. Proving the list of actions applied to the

Precondition imply the postcondition

• How to prove repetitive algorithms:
• Iterative algorithms: use Loop invariants, Induction

• Recursive algorithms: use induction using as  hypothesis 

the recursive call

Correctness proofs for Recursive Algorithm 



That’s all for this lecture!


